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S T R E S S E S  I N  A W E I G H A B L E  H A L F - P L A N E  

W I T H  A S E M I C I R C U L A R  N O T C H  

A .  D .  Z a i k i n  UDC 539.3+624.131.522 

The influence of  the surface roughness on the stress state of  a rock is studied. For an elastic 

half-plane in the gravity field that contains a notch shaped like a semicircle, the stress distri- 

bution is constructed. It is shown that depending on the Poisson ratio, the notch bottom can 

be in a state o f  tension or compression. The polynomial  dependence of  pressure on depth is 

given on the axis o f  symmetry .  

The stress state of a geological section depends on the contour of seismic boundaries [1]. To analyze 
the stresses that  are due to the surface roughness, we consider a half-plane weakened by a notch in the form 
of a semicircle. 

1. There  is a homogeneous elastic half-plane whose boundary has a notch in the form of a half-disk of 
unit radius in the gravity field. The equations of equilibrium have the form 

0~ik 
Ox---[. + Pgi = 0, (1.1) 

where p is the density and gi is the component of the acceleration-of-gravity vector. The boundary conditions 
are the absence of loads at the boundary of the half-plane and the notch contour. 

In the absence of a notch, the solution of the problem for a half-plane is written in the form 

o o o = 0, (1.2) (Tx~ = = ypgu / (1  - u), ~yy = ypg, azy 

where u is the Poisson ratio. 
The general solution of (1.1) for a half-plane with a notch can be written as a sum of the particular 

1 The solution (1.2) and the general solution of the homogeneous equation of equilibrium aij = ~oj + aij.  

additional stress field a~j should compensate for the loads Pi = a i jn j  created by the particular solution (1.2) 
at the semicircle contour. 

Assuming that  the x axis coincides with the half-plane boundary and the y axis is directed upward, 
we have nz  = - x  and ny = - y  on the semicircle of the projection of the normal vector; therefore, pO = 
- y x p g ~ , / ( 1  - , )  and pO = _y2pg.  On the complex plane, we have x = (z + 5) /2  and y = (z - 2) / (2 i ) ;  then 

) 4 1 -  ~, ~ L ' ;  52 ' ]z] = 1, I m z  < 0. 

For the normal and tangential components of the load vector, which compensates for the particular 
solution (1.2) on the semicircle contour, we have N - i T  = (po  _ iP~y)z. For ai~, the boundary condition on 
the semicircle contour is written in the form 

( 1 - 2 ~  ) ipg 1 5 z 3 N - i T  = T 2z 1 ~  1":-'~ ' Izt = 1, Im z  < 0. (1.3) 
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We now extend (1.3) to the region Im z > 0. The resulting loads are antisymmetric with respect to the x 
axis. 

2. We consider the unbounded plane with a cut circle of unit radius to which the loads (1.3) are 
applied. If (1.3) is represented in the form of a complex Fourier series 

+oc 
N -  i T  = E AkeikO' (2.1) 

k = - - o o  

only the coefficients A1 = i ra~2 ,  A_~  = - i r a ~ N ( 1  - v)),  and  A3 = - i r a ( 1  - 2v) / (4(1  - v)) differ f rom zero. 

Let r  and ~(z)  be functions that  are homogeneous outside the circle ]z] = 1; the expansion of these 
oo oG 

functions into a Laurent series has the form r  = E akz-k and ~(z)  = E bkz-k" According to [2], the 
k=O k=O 

coefficients ak and bk are related to the expansion coefficients (2.1) by the relations 

a0 = F, al = -41/(1 + ze), a2 = [" + i2 ,  a .  = -4n, 

b0 = F', bl = - z e A l ~ ( 1  + ae), b2 = 2F - Ao, bn = (n - 1)an-2 - A-n+2, n />  3, 

where ze = 3 - 4v in the case of plane strain and F and F' are the specified quantities which characterize the 
stress distribution at infinity. 

In this case, only the coefficients 

ipg ipg(1 - 2v) 
bl = el = 8 ( 1 - - v ) '  a 3 =  4 (1 - -v )  ' 

are not zero. Then, the potentials can be written in the form 

' ~ ( z ) - -  ipg (~ 2(1 - 2v) '~ 
8 ( i - - , . , )  ~3 ] ,  ~ ( z )  = 

Since the stress tensor is determined from the relations 

ipg(3 - 4v) ipg(1 - 2v) 
8 ( 1 - v )  ' b 5 =  1 - v  

8(~p_g ) ( 3 - 4 v  8 ( 1 - 2 v ) ~  
2- ~ ,, 

azz  + ayy = 4Re (I)(z), 

we finally obtain 

1 ~____g ( _  ( 5 _  4v) s in~ + sin34 

a ~  - a~x + 2ia~v = 2(~O'(z)  + ~(z ) ) ,  

+ 4(1 - 2v) Sinr 334 6(1 - 2v) ~ + 8(1 - 2 v ) s i n  54 Sinr 554 ]~' 

1 - -  1.P__g (COS 34 cos 4 cos 54 cos 54 
axu 8( v ) \  r ( 3 - 4 v )  - 6 ( 1 - 2 v )  + 8 ( 1 - 2 v )  r - - 7 -  r s 2 '  

(2.2) 
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1 _ 1 - 2 v  (1 3 4 )  1 1 = 0  . (2.3) 

Thus, solution (2.2) is not subject to the boundary conditions imposed on the additional field a~j on 
the real axis. ~Ve construct a solution ai2j that  ensures zero loads on the circle contour and tangential loads 
compensating for (2.3) on the real axis. 

1 
/ 54 

= ( ~  ~ - -  + 4(1 - 2v) + 6(1 - 2v) 8(1 - 2v) ~zx 8( u) (1 - 4u) sin4r sin34r 7sin34 S i n r  a ~ / s i n  54~, 

where r = ~ + y2 and 4 is the polar angle. For transition from the circle of unit radius to a circle of radius 
R, it is necessary to replace pg in (2.2) by pgR,  and r by r / R .  

It is easy to check that  together with (1.2), the resulting solution (2.2) ensures zero loads on the circle 
contour. On the real axis, we have 



3. Let  the  concent ra ted  force (Pz,Py) be appl ied  to  the  po in t  z 1 ~--- (Sgl,0) ( IZl [  :> 1) located  on the  
real axis of  the  p lane  with  a cut load-free circle of  uni t  radius.  

T h e  po ten t ia l s  of the  concen t ra ted  force appl ied  a t  an a rb i t r a ry  point  Zl of  the  unbounded  p lane  have 

the  fo rm 

~(Z)  = - P l n  (z - Zl)  , ~)(z)  = ~ / s l n  (Z --  Zl)  + ZlP/(z  - Zl) ,  (3 .1)  

where  P = (Pz + iPy)/b and b = 27r(1 + ~e). I f  X and  Y are the  pro jec t ions  of  the  loads applied a t  the  contour  

s, the  l imit ing re la t ion  
~ 

~(z) + z~;'(z) + ~,(z) = i / ( X  + iY) ds = f(z) (3.2) 

0 

is satisfied on the  contour  [2]. Subs t i tu t ing  the concen t ra ted- force  poten t ia l s  (3.1) into (3.2), we have  

f(')=-P(In(a-xl)-'In[:a-xl) ) l / l a x  +/5[i/ x10- 0-_2 ~, 10-I=I. (3.3) 
- -  X l 0 -  1 - -  3 " 1 0 " /  

To unload the  circle contour ,  we apply  the  loads -f(0") to it. Vqe represent  the  solut ion for an unbounded  
p lane  wi th  a cut  circle whose contour  is loaded in the  form [2] 

1 / f(a)d,, @(z)- 1 i f(') d'-~'(z---~) (3.4) 
c;(z) = 27r'i a - z 27ri a - z z 

lat=l I~l=l 

We wri te  the  con juga te  b o u n d a r y  condit ion in the  form 

f(a) = -/5( In (i _ xl) - --In(0-- xl)) + P(c, x__.l 1 ] 1. - z l  0-(~- xl)~' 
We now subs t i t u t e  (3.3) and the resul t ing express ion into (3.4). T h e  integrals f rom (3.4) are ca lcula ted  using 

the  Cauchy  t h e o r e m  and integral  formula.  After  ca lcula t ing  the  integrals,  we have 

1 1 ), 
9g(z) = - P ~  ln ( 1 -  x @ )  - / 5 ( 1 _ X l  z x2([ - Xl z) 

(3.5) 

r  1 _ c;'(z.__.~), iz I > 1. 
\ XlZ/ XlZ Z 

Combin ing  (3.1) and (3.5), we ob ta in  the  po ten t ia l s  t h a t  cor respond  to the  concen t ra ted  force appl ied  a t  a 

po in t  on the  real axis of  the  plane with  a cut  circle having  a load-free contour:  

where  

~;(z) = W l ( z ,  xOP~ + iW2(z ,  xOP~,, ~,(z) = W3(z , z~ )P~  + iW4(z ,x~)P~,  

b t V l ( Z , X l ) = - l n ( z - x l ) - O e l n ( 1 -  1 ) +  l-x21 
z l z  z2,(1 - zl 12(1 z l z )  ' 

(3.6) 

( 1 ) 1-x  
b w 2 ( z , x l )  = - ln(z  - x l )  - ~ In 1 -  X---l; x ~ ( 1 -  x l z ) '  

bl/V3(z, Xl)  : B3 ln(z -- x l )  + ~ + In 1 -- 
Z -- Xl X lZ(1  --  XlZ)  2 Z2(1 --  XlZ) XlZ' 

bW4(z,x 0 = -~e  ln(z - x l )  + - -  
Xl l n ( l _  1 "~+ 1 - - X l  2 ~e 1 

z -- xl ~ J x l z  XlZ(1 - xlz) 2 z2(1 - XlZ) XlZ" 
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On the abscissa axis, together with the concentrated load, the distributed load also corresponds to the 
potentials (3.6). 

4. Let the continuous functions p(t) and ~-(t) be defined at the boundary L which consists of the rays 
[ - c~ , -1 ]  and [1, c~] belonging to the real axis. Then the zero loads on the circle contour correspond to the 
potentials 

~(z) =/(Wl(z,t)~(t) +iW2(z , t )p( t ) )dt ,  V(z) = / ( W 3 ( z , t ) T ( t )  +iW4(z , t )p( t ) )dt ,  
L L 

which are homogeneous outside the unit circle. Using these potentials, we form the functional 

~(z) + z~z'(z) + ~;(z) = / ( f h  (z, t)r(t) + iQ2(z, t)p(t))dr, 

L 

where 

(4.1) 

b ~ l ( z , t ) = - l n ( z - t ) + ~ e l n ( 5 - t ) - s e l n  1 - ~ z  + l n  1-~-~ 5 - t  

( 1)( 1 - t  2 ~ ) 1 - t  2 1 
+ Z - z  t(1 ts) 2 + 5 ( 1 : t 5 )  + t 2 ( 1 - t z )  ts'  

( 1 ) ( 1 )  z - t  
b~2(z, t) = " I n  (z - t) + ~e In (5 - t) - ~e In 1 - ~z + In 1 - ~-~ + --5-t  

( 1 ) (  1 - t  2 ~e ) 1 - t  2 1 
+ Z - z  t(1 tS) 2 -  5 ( 1 - t 2 )  t 2 ( 1 - t z )  + t z '  

We differentiate (4.1) with respect to x on the real axis. By virtue of (3.2), for the left side of equality (4.1) 
we have 

d 
d'-~ (~(z) + z~'(z) + ~(z)) = iX  - Y. (4.2) 

The value of the integrand on the right side of (4.1) depends on from which half-plane the limiting passage 
to the real axis is carried out. In the form lira (df~k(Z, t)/dx),  the terms containing the logarithmic function 

y~:k0 
are multiple-value, because lim(dln(x + iy - t ) /dx) = 1/(x - t) ~ izcS(x - t). The upper sign (plus or minus) 

y---*0 
corresponds to transition from the upper half-plane. 

After the transition to the real axis, we obtain 

where 

d 1 - ~  
b ~x Qi(x, t) = :kizr(1 + m)6(x - t) x - t - -  +h~(x , t ) ,  (4.3) 

1 (_~ 1 -  ~)  1 2(1- t 2) (x 1 
K l ( x , t )  = 1 - t x  �9 + + - 

1 (2t 2 1 t 
(1- - tx)  2 t tx--5 + - ~ -  ~t  + ~-~) ' 

1 ( 2t~ 1 - s e ) _  1 + 2 ( 1 - t 2 ) (  x -  1 ~ +  1 ( 1 t 
K2(x, t )  - 1  -=~x\ x 3 x - t-~ ~ "__- ~ 5 .  x ]  ( 1 -  tx) 2 \ ~ x  2 x 2 m t +  xZ ]. 

After separation of the real and imaginary parts of the functions p(t) and 7(t), from (4.1)-(4.3) we 
obtain the singular equations with Cauchy-type kernels: 
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L L (4.4) 

• + m)p (x )+  ( 1 -  ~e) i ;(t--)t d t -  i Kl(X,t)7(t)dt = bY +. 
L L 

Thus, one can satisfy the given loads on L with the functions p(t) and 7(t) (t) chosen properly. 
5. If one sets se = 1 and b = 2~r in (3.1), one obtains the potentials of the concentrated force applied 

to the half-plane boundary [2]. After this substitution, the potentials (3.6) can be treated as the potentials 
of the concentrated force applied to the boundary  of a half-plane having a semicircle-shaped notch whose 
contour is free from loads. In this case, (4.4) is reduced to the form 

where 

r f K2( ,t)p(t)dt=X, p(x) + f K,(x.t) (Odt=Y. (5.1) 
L L 

2~h'i(x, t) = 
(1 - tx)x 3 

1 2(I-t2) ( I) t (  21 2t) 
+ ~ + ( 1 -  t~)3 t x - ~ + (i - t z ) 2  - t + 7 + tx2 Ei ' 

2 1 + 2 ( 1 - t 2 ) (  x -  1~+ 1 ( 1 - t ) .  
27~K~(x, t) 

The sign of the load projections X and Y is changed, because the region remains on the right rather than on 
the left in the motion along the real axis in the positive direction. In contrast to (4.3), the kernels Kt  (x, t) 
and K2(x,t) include the factor 21r. 

We now write the kernels of the resulting equations in the form of power series in x: 

Skx  , 27rK2(z,t) = ~ S Z z -  , 

k----2 k=2 

where S i = 2t -1, S i = 4t -2 - 2t -4, S~ = (k - 1)(k - 2 ) ( - t  -1 + 2t - t3)t -k, S~ = - 2 t  -3, S~ = 4t -2 - 6t -4, 

and S~ = (k - 1 ) ( - k t  - i  + 2(k - 2)t - (k - 4)t3)t -k  for k >~ 4. 

With allowance for the structures of the kernels and the equality 

i { 2 / ( n - l ) ,  n=O, 2,4,. . . ,2k, L = [ _ o o , _ l l U [ 1 ,  c~ l 
t - "d t=  O, n = 1 , 3 , 5 , . . . , 2 k +  1, 

L 

one can show that  if X is an odd function and Y is an even function relative to x, we have "r(x) = - r ( - x )  
and p(x) = pC-x). We search for the densities of the potentials in the form 

o~ o~ ~2n 
: E"n+' E x 2 n + l  , R ( X )  ~--- X2  n . 

n=0 n = l  

Then, Eqs. (5.1) can be rewritten as follows: 

X ~- E ~ 1 1 z9 f s 2 rt~t-2m x 2n+1 27r x2k+-------T E P 2 m J  2k+l t  J dt, (5.3) 
n=0 k = l  m = 0  L 

n--1 

+ ~ ~ '~  E a2m+l k(t)t -2m-1 dt. 
k=2 m=0  L 
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If X2k+l and Y2k are the expansion coefficients of the loads into series similar to (5.2), then, equating 
in (5.3) terms with the same powers x, we obtain the following infinite system of linear algebraic equations 

relative to ak and ~k: 

Here 

(22k+1 -- E m B 2 k + l  P~2m 2m ----- X 2 k + l '  
rn -1  

oo 

~2k + E a A 2k . 2m+l 2m+l = Y2k, 
rn=0 

k = 0 ,  1 ,2  . . . . .  co, 

k = 1 , 2 , 3  . . . .  ,o~, 

(5.4) 

7rA22m+l _ 2 2m + 1' BJm = O, 
4 6 ~ 3  

zr~2~ -- 2m + 1 2m + 3'  

7rA2k2m+l = (2k - 1)(2k - 2 ) (  
1 2 1 ) 

2 m + 2 k + l  + 2 m + 2 k - 1  2 m + 2 k -  3 ' 

7r~2k+l 2k ( 2 k + 1  2 ( 2 k -  1) 2k 3 ) k~>2. 
~2m 2 m + 2 k + l  + 2 m + 2 k - 1  2 m +  3 ' 

To compensate  for the stresses (2.3) on L, we set the coefficients X1 = 1, X3 = 3, and X5 = - 4  different 
from zero on the right side of (5.4). Then,  the coefficients ak and /3k depend only on the index k, and the 
characteristics of the medium enter the solution (5.2) in the form of the factor h = 0.25pg(1 - 2v ) / ( I  - u). 

If only the first M terms of expansion (5.2) are retained in the infinite system (5.4), its solution, for 
example, by the Gauss method with the choice of the principal element, has no difficulties. As AI ~ c~, the 
solution converges, and, beginning with the fifth or sixth term, ak and 3k decrease similarly to A1-1. 

6. Wi th  ak and ~k known, one can determine the stress state at each point of the half-plane. Here it 
is more convenient to pass to the potentials ~(z)  = ~ '(z)  and ~(z)  = f, '(z): 

Here 

O(z)=f(ul(z,t)r(t) +iU2(z,t)p(t))dt, 
L 

~( z )  = f (U3(z, t )r( t )  + iUa(z, t)p(t)) dt. 

L 

1 i I -- t 2 1 I 1 - t 2 
= - -  + + 2 ~ U 2 ( : , t )  = - -  + 27rU1(z, t) t - z z(1 - zt) t(1 - zt) 2' t - z z(1 - zt) t(1 - zt) 2' 

(6.1) 

2~U3(z,t) = 
1 t 1 

t - z  ( z - O  2 z ( 1 - z t )  

2 1 - t 2 t 2(1 - t 2) 1 

+ z3(1 - tz) + tz2(1 - tz)  2 z2(1 - tz) 2 z(1 - tz)  3 + tz 2' 

2 : rUd(z , t )=  1 t 1 2 1 2 ( 1 - t  2) 1 
t - z (z - t)-------~ + z(1  - z t )  + z3(1 - tz )  t : 2 ( 1  - tz)~ + ~ - ~ - - - t W  3 + t -~"  

We define the following integrals [3]: 

S i ( )- , 12.+I= t.n+i~;_z) =Z2-'j'j-~T lnkz_l/-i/r -E(2n_2k+l)z2 ., 
L k= l  
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I2n---- t2n(; - - z )  = l n k z _ l g - i Z r  - E ( 2 n _ 2 k _ 9 1 l z  2k-1' 
L k= l  



f dt 
J2n+l = t2~+1(1 - zt) 

L 

z 2~ In \,. _ 11 2n--- 2-k--+ i' 
k=l 

n 

J2"= t2"(f--zt) \ z - i /  + 2 n - 2 k + l '  
L 

n = O ,  1, 2 . . . .  ,oo, 

Ro=2/(z  2 -1) ,  Qo=-2 / ( z  2-1) ,  H o = - 2 / ( z  2 -1 )  2 , H - l = - 2 z / ( z  2 -1 )  2 , (6.2) 

/ dt _ n z n - ' (  2z l n ( Z + l ~  
R~ = t~(1 - zt) 2 -~--- 1 \ z -  1 / /  

L 

n-1 n z k _  1 
-- E ( . . _  ~g)-"~ ~ ]g -4- 1) ( (-1)n-k i 

k = l  "IT~ I - - Z / '  

S dt n ( 2 1 (  ( z + l ~  ))  
Qn -- t n ( z  -- t) 2 = - z  -'~ ~ + z in \ z  - 1 /  -- iTr 

L 

n - 1  n ( ( - - 1 )n~  k _ 1 )  

- -  ( ~ - k ) ( n - "  k + l ) z  k \  z + l  z 1 ' 
k = l  

f dt n O, + 1)z n-1  (2z(z 2_ =2) 
H,, = tn(1 -- Zt) 3 -- 2 \ (Z 2 -- 1) 2 

L 

in ( z +  1"~ 
\ z  - 1 / )  

+ - I 
71 1, 2 

z.. ,  ', ( i  + z) 2 ( I  -z)  2 / ' = . . . . .  00. 

k = l  
l 

T h e  expressions for dn, P~, and H,, contain the  differences of the  power functions z n. For large z and n, 
the calculat ions in finite-valued ar i thmet ic  become impossible because of rapidly growing errors. Therefore ,  
for z > 1, we use the expressions derived from (6.2) by means of series expansions: 

oo z_  2k_ 1 

J2n+l = - 2 E  2n + 2k + 1 '  
k = 0  

z -2k -2  

J2n = -2 E 2n + 2k + 1' 
k=0 

or (2k + 2)z -2k-3 X "  
~'-~2~+1 = 2 A.. 2n + 2k + 3 

k=O 

o0 ( 2 k +  1)z -2k-2 

R 2 n = 2 Z  2 n + 2 k + 1  ' 
k=O 

H2n+l -'~ - ~ (2~ + 1)(2k + 2)z -2k-3 
2 n + 2 k + 3  

k=0 

H2n = - ~ (2k + 2)(2k + 3)z -2k-4 
2 n + 2 k + 3  

k = 0  

Subst i tu t ing  (5.2) into (6.1) and taking into account  (6.2), we obta in  the desired potent ia ls  

27r ~(z} = a2,~+l I2n+1 + + R2n+2 - R2n + i E/32~ I2, + J2n 
h z z 

n=O n = l  
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~. ff~(Z)= [~2n(Y2n- (~2n-1-[- (z  "91- "~) J2n ~ 7  "~-(H2n-  
n=l 

+ Ea2n+l -12n+1-Q2n- - J2n+l+-~(R2n+2-2R2n)-2-(H2n+l-H2n-1)+z2(2n+l) i 

n=O Z 
Thus, the stresses in an elastic half-plane with a notch in the form of a half-disk in the gravity field 

are the sum of stresses (1.2), (2.2), and (6.3). From the symmetry of the problem, it follows that  azx and 
ayy a r e  even functions relative to x, and axy is an odd function. 

0 1 2 where a~ are the stresses calculated 7. We represent the total  stresses in the form o'ij = o'ij +a i j  +ai j ,  
from (6.3). The  calculations were performed for a notch of radius R: the coordinates are referred to the 
radius, and the stresses to pgR. 

Figure 1 shows the stresses ~2 z (curve 1) and alxy (curve 2) at the boundary y = 0. The  stresses are 
referred to 2h [here 2h = 0.5#gR(1 - 2 u ) / ( 1 -  u)] and do not depend on the characteristics of the medium. By 
virtue of the boundary  conditions, the stresses a~y are zero, and o'~y(x, O) = 1 " -axy (X ,  0). Wi th  allowance for 

(1.2) and (2.2), we find that curve 1 in Fig. 1 corresponds to the single nonzero component of the total-stress 
tensor at this boundary. 

The error of the calculations by means of (6.3) is connected mainly with the fact that  we should confine 
ourselves to a finite number of desired quantities in the solution of the infinite system (5.4). However, this 
error becomes noticeable only in the vicinity of the angular points (=i=R, 0). 

In the calculations, 200 terms were kept in system (5.4). Beginning with M = 25, the stress distribu- 
tions do not as a mat ter  of fact depend on the number of retained terms, except for the component  a2xz in 
the interval - 1 . 3 2 R  ~< x ~< - R .  As the dimensionality of the system grows, the solution converges slowly to 
the value of a 2 z ( - R ,  0) = 0, which follows from the boundary conditions on the semicircle. The  polynomial 

interpolation was performed in the indicated interval. 
The  material  near the boundary  is in a state of compression, because akk < 0. For x ~ -1 .74R,  

the compression reaches the maximum values of ~zx ~ -0 .2pgR(1  - 2u)/(1 - u). If x --~ c~, we have 
crxz ~.. - ( R / x )  2. 

0 and a~j give zero loads on the semicircle contour; In the solution, the quanti ty a2j and the sum of aij 
therefore, in the polar coordinate system, only the stress-tensor component a ~  is different from zero; the 
dependence of this component on the polar angle p is shown in Fig. 2 [curve 1 refers to a~r curve 2 to 

a~~ + a ~ ,  and curve 3 to the sum of the stresses (1.2), (2.2), and (6.3)] 
In the calculations, the Poisson ratio was assumed to be equal to 0.2. For a =k30 ~ deviation from the 

vertical, the notch contour is in a state of tension, and the other sections of the contour are in a state of 
compression. 

At the notch bottom, at the point (0, - R )  the solution (6.3) gives a single nonzero component  of the 
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stress tensor cr~J(2h)  = 1.59. For the total-stress tensor [the sum (1.2), (2.2), and (6.3)], we can write 

~,xx = 0 . h p g R ( ( 1  - 4 . )  + 1 . 5 9 ( 1  - 2 . ) ) / ( 1  - . ) ,  o ~  = ~x~ = o. 

The stress concentrat ion at this point reaches a significant magni tude and is determined by the Poisson ratio. 

The  notch b o t t o m  can be in a s tate  of tension (axz = 1.04pgR for u = 0.1) or compression (crzx = - 0 . 2 3 5 p g R  
for - = 0.4). The  change of the types of stress occurs for , = 0.361. 

The  average normal stress has the form P = -(crxx + o'yu)/2. Applying t~e polynomial approximat ion 

to the calculation results obtained from (6.3) and taking into account the contribution from stresses (1.2) 
and (2.2), we represent the average normal stresses on the straight line x = 0 in the form 

pgR  (~ 1 1 - 2u . / 0  494 1.301 2.239 2.133 1.194 0.3 
P ( ~ ) -  

where ~ = y / R .  For ~, < 0.361, in the vicinity of the notch bo t tom there is a zone of tensile stresses in which 

P < 0. The  depth  of this zone is quite significant; it reaches -1 .275R f o r ,  = 0.1 and -1 .135R for u = 0.25. 
The stress (1.2) increases by a linear law with depth. An additional stress field (a]j + a~2j), which 

decreases with distance from the notch not slower than  r -1, is imposed on (1.2). Figure 3a-c shows isolines 

of the  addit ional field of stresses azx, cryy, and axy. The  calculations were performed for u = 0.2. As before, 
the stresses are referred to pgR. 

In the narrow zones adjacent to the boundary  y = 0, compression occurs in the horizontal direction 
(az[z + az2z < 0), and expansion occurs on the other par t  of the half-plane (azlz + ~r2= > 0) (Fig. 3a). The 

influence of the notch decreases rapidly with distance from it. The maximum stresses azx are reached at the 

notch bo t t om and on the rays located at the angles 7r/4 and -7r /4  to the coordinate axes. 
The stresses o-yy of the additional field (Fig. 3b) are localized under the notch and, as a result, the 

material  extends in the vertical direction (O'yyl q_ Cryy2 > 0). The  max imum value of (7yy is a t tained at the notch 

b o t t o m  and is equal to pgR  according to the boundary  conditions. 
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The petals of the isolines of the stresses azy of the additional field are elongated at the angles 7r/3 
and -7r/3 (Fig. 3c). The maximum value of axy = 0.28pgR is reached at the points with coordinates (• 
-1.46R) rather than on the notch contour. 

Thus, the notch is a concentrator of stresses. The effect of the notch on the stress state of rocks is local; 
at the depth 5R, the contribution to the average normal stresses is 3.3%, which is 5 MPa, for example, for 
p = 2.55 g/cm 3 and R = 200 m. These gradients can cause a redistribution of fluids that saturate productive 
layers, thus creating potential traps of the kind for them. 
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